PaliGemma/[PaliGemma_1]Referring_expression_segmentation_in_videos.ipynb (716 lines of code) (raw):

{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "Tce3stUlHN0L" }, "source": [ "##### Copyright 2024 Google LLC." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "tuOe1ymfHZPu" }, "outputs": [], "source": [ "# @title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "sSVXJYfVvCJB" }, "source": [ "#### This notebook is created by [Nitin Tiwari](https://linkedin.com/in/tiwari-nitin).\n", "\n", "#### **Social links:**\n", "* [LinkedIn](https://linkedin.com/in/tiwari-nitin)\n", "* [GitHub](https://github.com/NSTiwari)\n", "* [Twitter](https://x.com/NSTiwari21)" ] }, { "cell_type": "markdown", "metadata": { "id": "W634WCRovEdo" }, "source": [ "# Referring Expression Segmentation in videos" ] }, { "cell_type": "markdown", "metadata": { "id": "NTGOdrsTvHHw" }, "source": [ "This notebook guides you to perform referring expression segmentation on videos using [PaliGemma](https://ai.google.dev/gemma/docs/paligemma) and draw the inferences using OpenCV and PIL.\n", "\n", "<table align=\"left\">\n", " <td>\n", " <a target=\"_blank\" href=\"https://colab.research.google.com/github/google-gemini/gemma-cookbook/blob/main/PaliGemma/[PaliGemma_1]Referring_expression_segmentation_in_videos.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n", " </td>\n", "</table>" ] }, { "cell_type": "markdown", "metadata": { "id": "X4YM125TvdjZ" }, "source": [ "### Get access to PaliGemma\n", "\n", "Before using PaliGemma for the first time, you must request access to the model through Hugging Face by completing the following steps:\n", "\n", "1. Log in to [Hugging Face](https://huggingface.co), or create a new Hugging Face account if you don't already have one.\n", "2. Go to the [PaliGemma model card](https://huggingface.co/google/paligemma-3b-mix-224) to get access to the model.\n", "3. Complete the consent form and accept the terms and conditions.\n", "\n", "To generate a Hugging Face token, open your [**Settings** page in Hugging Face](https://huggingface.co/settings), choose **Access Tokens** option in the left pane and click **New token**. In the next window that appears, give a name to your token and choose the type as **Write** to get the write access.\n", "\n", "Then, in Colab, select **Secrets** (🔑) in the left pane and add your Hugging Face token. Store your Hugging Face token under the name `HF_TOKEN`." ] }, { "cell_type": "markdown", "metadata": { "id": "GmCMot7Gvfcg" }, "source": [ "### Select the runtime\n", "\n", "To complete this tutorial, you'll need to have a Colab runtime with sufficient resources to run the PaliGemma model. In this case, you can use a T4 GPU:\n", "\n", "1. In the upper-right of the Colab window, click the **▾ (Additional connection options)** dropdown menu.\n", "1. Select **Change runtime type**.\n", "1. Under **Hardware accelerator**, select **T4 GPU**." ] }, { "cell_type": "markdown", "metadata": { "id": "tatYlRwvbDNY" }, "source": [ "### Step 1: Install libraries" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "DeBbVm6pa-Lt" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m119.8/119.8 MB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m309.4/309.4 kB\u001b[0m \u001b[31m21.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m251.6/251.6 kB\u001b[0m \u001b[31m19.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.3/21.3 MB\u001b[0m \u001b[31m44.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m43.2/43.2 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Building wheel for ml_collections (setup.py) ... \u001b[?25l\u001b[?25hdone\n", "Requirement already satisfied: huggingface_hub[cli] in /usr/local/lib/python3.10/dist-packages (0.23.4)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface_hub[cli]) (3.15.1)\n", "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub[cli]) (2023.6.0)\n", "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub[cli]) (24.1)\n", "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub[cli]) (6.0.1)\n", "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface_hub[cli]) (2.31.0)\n", "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub[cli]) (4.66.4)\n", "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub[cli]) (4.12.2)\n", "Collecting InquirerPy==0.3.4 (from huggingface_hub[cli])\n", " Downloading InquirerPy-0.3.4-py3-none-any.whl (67 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.7/67.7 kB\u001b[0m \u001b[31m3.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting pfzy<0.4.0,>=0.3.1 (from InquirerPy==0.3.4->huggingface_hub[cli])\n", " Downloading pfzy-0.3.4-py3-none-any.whl (8.5 kB)\n", "Requirement already satisfied: prompt-toolkit<4.0.0,>=3.0.1 in /usr/local/lib/python3.10/dist-packages (from InquirerPy==0.3.4->huggingface_hub[cli]) (3.0.47)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub[cli]) (3.3.2)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub[cli]) (3.7)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub[cli]) (2.0.7)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub[cli]) (2024.6.2)\n", "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit<4.0.0,>=3.0.1->InquirerPy==0.3.4->huggingface_hub[cli]) (0.2.13)\n", "Installing collected packages: pfzy, InquirerPy\n", "Successfully installed InquirerPy-0.3.4 pfzy-0.3.4\n" ] } ], "source": [ "!pip install bitsandbytes transformers accelerate peft -q\n", "!pip3 install -q \"overrides\" \"ml_collections\" \"einops~=0.7\" \"sentencepiece\"" ] }, { "cell_type": "markdown", "metadata": { "id": "H6gLDltJbTpc" }, "source": [ "### Step 2: Import libraries" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "NLXxDAQvbVhk" }, "outputs": [], "source": [ "from transformers import AutoTokenizer, PaliGemmaForConditionalGeneration, PaliGemmaProcessor\n", "import torch\n", "import numpy as np\n", "import cv2\n", "import os\n", "import re\n", "import matplotlib.pyplot as plt\n", "import sys\n", "from PIL import Image, ImageDraw, ImageFont" ] }, { "cell_type": "markdown", "metadata": { "id": "ShmfbLUabZHr" }, "source": [ "### Step 3: Fetch the `big_vision` repository" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "6_Cd2CZEba25" }, "outputs": [], "source": [ "if not os.path.exists(\"big_vision_repo\"):\n", " !git clone --quiet --branch=main --depth=1 \\\n", " https://github.com/google-research/big_vision big_vision_repo\n", "\n", "# Append big_vision code to Python import path.\n", "if \"big_vision_repo\" not in sys.path:\n", " sys.path.append(\"big_vision_repo\")" ] }, { "cell_type": "markdown", "metadata": { "id": "HKJruSCIbcGb" }, "source": [ "### Step 4: Set environment variables for Hugging Face token" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "0KDj2WylvoRB" }, "outputs": [], "source": [ "import os\n", "from google.colab import userdata\n", "\n", "os.environ[\"HF_TOKEN\"] = userdata.get('HF_TOKEN')" ] }, { "cell_type": "markdown", "metadata": { "id": "Lpinx3KIbhMA" }, "source": [ "### Step 5: Load pre-trained PaliGemma model" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Evn_cTrCbjCO" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4eb98e73425a42f09d8166252784f226", "version_major": 2, "version_minor": 0 }, "text/plain": [ "config.json: 0%| | 0.00/1.03k [00:00<?, ?B/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "08b14e775ac645d18522718629928189", "version_major": 2, "version_minor": 0 }, "text/plain": [ "model.safetensors.index.json: 0%| | 0.00/62.6k [00:00<?, ?B/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "76e3f5791b014e07bad9fe253bbf8f93", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Downloading shards: 0%| | 0/3 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b9517a658c354afe8207646cdf69ab98", "version_major": 2, "version_minor": 0 }, "text/plain": [ "model-00001-of-00003.safetensors: 0%| | 0.00/4.95G [00:00<?, ?B/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5eab03359f0d4272ad925f04f8f0cc5b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "model-00002-of-00003.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d463015567c04193a6bb113b1f134d9b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "model-00003-of-00003.safetensors: 0%| | 0.00/1.74G [00:00<?, ?B/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "`config.hidden_act` is ignored, you should use `config.hidden_activation` instead.\n", "Gemma's activation function will be set to `gelu_pytorch_tanh`. Please, use\n", "`config.hidden_activation` if you want to override this behaviour.\n", "See https://github.com/huggingface/transformers/pull/29402 for more details.\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e8121d270dce4e1ca2c26f13f62d5b14", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Loading checkpoint shards: 0%| | 0/3 [00:00<?, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9103dc9bade54fc4bb6216c85d047787", "version_major": 2, "version_minor": 0 }, "text/plain": [ "generation_config.json: 0%| | 0.00/137 [00:00<?, ?B/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "834d0729774b4ba3a1ef6c434636432b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "preprocessor_config.json: 0%| | 0.00/699 [00:00<?, ?B/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "005cb841ed0e41639526fe0cec546c4f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "tokenizer_config.json: 0%| | 0.00/40.0k [00:00<?, ?B/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "42fcb0fdeefd422a994ad0ebc83fe02a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "tokenizer.model: 0%| | 0.00/4.26M [00:00<?, ?B/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fb083b4ac2d54f6391d953e1717181cc", "version_major": 2, "version_minor": 0 }, "text/plain": [ "tokenizer.json: 0%| | 0.00/17.5M [00:00<?, ?B/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0fadbf6b29fb4a47b4a2cbc75fd73b03", "version_major": 2, "version_minor": 0 }, "text/plain": [ "added_tokens.json: 0%| | 0.00/24.0 [00:00<?, ?B/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b62c5e107d704e5392585f0c0862dc27", "version_major": 2, "version_minor": 0 }, "text/plain": [ "special_tokens_map.json: 0%| | 0.00/607 [00:00<?, ?B/s]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", "model_id = \"google/paligemma-3b-mix-224\"\n", "model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16)\n", "processor = PaliGemmaProcessor.from_pretrained(model_id)" ] }, { "cell_type": "markdown", "metadata": { "id": "-0dBGTR4b_YR" }, "source": [ "### Step 6: Function to draw segmentation mask on videos" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "BJH5zjHVcBBX" }, "outputs": [], "source": [ "import big_vision.evaluators.proj.paligemma.transfers.segmentation as segeval\n", "reconstruct_masks = segeval.get_reconstruct_masks('oi')\n", "\n", "def show_segmentation_output(image, segment_masks, image_size, coordinates_list, labels):\n", "\n", " height, width = image_size\n", " global label_colors\n", " masked_image = Image.fromarray(np.uint8(image.copy()))\n", "\n", " for i, segment_mask in enumerate(segment_masks):\n", " coordinates = coordinates_list[i]\n", " label = labels[i]\n", "\n", " color = label_colors.get(label, None)\n", " if color is None:\n", " color = (np.random.randint(256), np.random.randint(256), np.random.randint(256), 128)\n", " label_colors[label] = (np.random.randint(256), np.random.randint(256), np.random.randint(256), 128)\n", "\n", " y1, x1, y2, x2 = coordinates[0], coordinates[1], coordinates[2], coordinates[3]\n", " y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))\n", "\n", " # Get mask width and height.\n", " w = x2 - x1\n", " h = y2 - y1\n", "\n", " # Scale the mask\n", " x_scale = w / 64\n", " y_scale = h / 64\n", "\n", " # Create coordinate grids for the new image.\n", " x_coords = np.arange(w)\n", " y_coords = np.arange(h)\n", " x_coords = (x_coords / x_scale).astype(int)\n", " y_coords = (y_coords / y_scale).astype(int)\n", "\n", " # Resize segment mask based on scaling factors.\n", " resized_segmend_mask = segment_mask[y_coords[:, np.newaxis], x_coords]\n", "\n", " resized_segmend_mask = np.squeeze(resized_segmend_mask)\n", "\n", " pil_image = Image.fromarray(np.uint8(image))\n", "\n", " mask = Image.new('RGBA', pil_image.size, (0, 0, 0, 0))\n", " draw = ImageDraw.Draw(mask)\n", "\n", " # Draw the mask on the image.\n", " for y in range(h):\n", " for x in range(w):\n", " if resized_segmend_mask[y, x] > 0:\n", " draw.point((x, y), fill=label_colors[label])\n", "\n", " masked_image.paste(mask, (x1, y1), mask)\n", "\n", " masked_output = np.array(masked_image.convert('RGB'))\n", "\n", " # Overlay the legend on the image.\n", " legend_y = int(height * 0.03)\n", " legend_box_width = int(width * 0.05) # Add padding for text\n", " legend_box_height = int(height * 0.04)\n", " for idx, (label, color) in enumerate(label_colors.items()):\n", " legend_entry_x1 = int(width * 0.84)\n", " legend_entry_y1 = legend_y\n", " legend_entry_x2 = legend_entry_x1 + legend_box_width\n", " legend_entry_y2 = legend_y + legend_box_height\n", " cv2.rectangle(masked_output, (legend_entry_x1, legend_entry_y1), (legend_entry_x2, legend_entry_y2), color[:3], -1)\n", "\n", " text = label\n", " font_scale = min(1, legend_box_height / 20)\n", " font_thickness = max(1, int(font_scale * 2)) # Adjust font thickness proportionally\n", " text_size = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)[0]\n", " text_x = int(width * 0.90) # Adjust for padding\n", " text_y = int((legend_entry_y1 + legend_entry_y2)/2 + legend_box_height*0.1)\n", "\n", " cv2.putText(masked_output, text, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 0), 2)\n", " legend_y += legend_box_height + max(height // 200, 5)\n", "\n", " return masked_output\n", "\n", "def parse_segments(detokenized_output: str) -> tuple[np.ndarray, np.ndarray]:\n", " matches = re.finditer(\n", " '<loc(?P<y0>\\d\\d\\d\\d)><loc(?P<x0>\\d\\d\\d\\d)><loc(?P<y1>\\d\\d\\d\\d)><loc(?P<x1>\\d\\d\\d\\d)>'\n", " + ''.join(f'<seg(?P<s{i}>\\d\\d\\d)>' for i in range(16)),\n", " detokenized_output,\n", " )\n", " boxes, segs = [], []\n", " fmt_box = lambda x: float(x) / 1024.0\n", " for m in matches:\n", " d = m.groupdict()\n", " boxes.append([fmt_box(d['y0']), fmt_box(d['x0']), fmt_box(d['y1']), fmt_box(d['x1'])])\n", " segs.append([int(d[f's{i}']) for i in range(16)])\n", "\n", " coordinates = boxes[0]\n", " mask = np.array(reconstruct_masks(np.array(segs)))\n", "\n", " return coordinates, mask" ] }, { "cell_type": "markdown", "metadata": { "id": "aDqVc7zevy96" }, "source": [ "### Step 7: Configure the input video and text prompt" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "M372oAWXv3gB" }, "outputs": [], "source": [ "input_video = 'input_video.mp4' # @param {type:\"string\"}\n", "\n", "prompt = \"segment person, mug, book\" # @param {type: \"string\"}\n", "prompt = prompt.replace(',', '\\n')\n", "\n", "output_file = 'segmentation_output_video.avi' # @param {type: \"string\"}" ] }, { "cell_type": "markdown", "metadata": { "id": "5qIdmXoAwI1q" }, "source": [ "### Step 8: Pass the input video and text prompt to PaliGemma" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "pCJ63nSncZsw" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Output video segmentation_output_video.avi saved to disk.\n" ] } ], "source": [ "# Open the input video file.\n", "cap = cv2.VideoCapture(input_video)\n", "\n", "# Define output video codec and file name.\n", "fourcc = cv2.VideoWriter_fourcc(*'XVID')\n", "\n", "out = cv2.VideoWriter(output_file, fourcc, 20.0, (int(cap.get(3)), int(cap.get(4))))\n", "\n", "label_colors = {}\n", "\n", "while(True):\n", " ret, frame = cap.read()\n", " if not ret:\n", " break\n", "\n", " # Convert the frame to a PIL Image.\n", " img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))\n", "\n", " # Send text prompt and image as input.\n", " inputs = processor(text=prompt, images=img,\n", " padding=\"longest\", do_convert_rgb=True, return_tensors=\"pt\").to(\"cuda\")\n", " model.to(device)\n", " inputs = inputs.to(dtype=model.dtype)\n", "\n", " # Get output.\n", " with torch.no_grad():\n", " output = model.generate(**inputs, max_length=496)\n", "\n", " paligemma_response = processor.decode(output[0], skip_special_tokens=True)[len(prompt):].lstrip(\"\\n\")\n", " detections = paligemma_response.split(\" ; \")\n", "\n", " # Parse the output bounding box coordinates\n", " coordinates_list = []\n", " labels = []\n", " segment_masks = []\n", "\n", " for detection in detections:\n", " detection = detection.split(\" \")\n", " locations, segmentations, label = detection[0], detection[1], detection[2]\n", " paligemma_output = locations + segmentations\n", " bbox, seg_output = parse_segments(paligemma_output)\n", " segment_masks.append(seg_output[0])\n", " coordinates_list.append(bbox)\n", " labels.append(label)\n", "\n", " width = img.size[0]\n", " height = img.size[1]\n", "\n", " # Draw bounding boxes on the frame\n", " image = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)\n", "\n", " for coordinates, label in zip(coordinates_list, labels):\n", " output_frame = show_segmentation_output(image, segment_masks, (height, width), coordinates_list, labels)\n", "\n", " # Write the frame to the output video\n", " out.write(output_frame)\n", "\n", " # Exit on pressing 'q'\n", " if cv2.waitKey(1) & 0xFF == ord('q'):\n", " break\n", "\n", "# Release the video capture, output video writer, and destroy the window\n", "cap.release()\n", "out.release()\n", "cv2.destroyAllWindows()\n", "print(\"Output video \" + output_file + \" saved to disk.\")" ] } ], "metadata": { "accelerator": "GPU", "colab": { "name": "[PaliGemma_1]Referring_expression_segmentation_in_videos.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 0 }